Physics-guided deep learning (PG-DL) approaches unroll conventional iterative algorithms consisting of data consistency (DC) and regularizers, and typically perform training on a fully-sampled database. Although supervised training has been incredibly successful, there is still room for further removing residual and banding artifacts. To improve reconstruction quality and robustness of supervised PG-DL, we propose to use multiple subsets of acquired measurements in the DC units during training by applying a multi-masking operation on available sub-sampled data, unlike existing supervised PG-DL approaches that use all the available measurements in DC units. Proposed method outperforms conventional supervised PG-DL method by further reducing theartifacts.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords