The parallel imaging method GRAPPA has been generalized within the Machine Learning framework by introducing the deep-learning method RAKI, in which Convolutional Neural Networks are used for non-linear k-space interpolation. RAKI is a database-free approach that uses scan-specific calibration data. Here, we study the influence of the calibration data on the image quality of 2D imaging sequences. The results indicate that RAKI yields superior signal-to-noise ratio but introduces blurring and loss of detail for typical calibration data amounts at high accelerations. Furthermore, the contrast information in the calibration data must be similar to that of the accelerated scans.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords