Meeting Banner
Abstract #1965

Zero-shot Learning for Unsupervised Reconstruction of Accelerated MRI Acquisitions

Yilmaz Korkmaz1,2, Salman Ul Hassan Dar1,2, Mahmut Yurt1,2, and Tolga Çukur1,2,3
1Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey, 2National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey, 3Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey

A popular framework for reconstruction of undersampled MR acquisitions is deep neural networks (DNNs). DNNs are typically trained in a supervised manner to learn mapping between undersampled and fully sampled acquisitions. However, this approach ideally requires training a separate network for each set of contrast, acceleration rate, and sampling density, which introduces practical burden. To address this limitation, we propose a style generative model that learns MR image priors given fully sampled training dataset of specific contrast. Proposed approach is then able to efficiently recover undersampled acquisitions without any training, irrespective of the image contrast, acceleration rate or undersampling pattern.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords