Three-dimensional (3D) MRI can achieve higher spatial resolution and signal-to-noise ratio than 2D MRI at the expense of long scan times. Recently, deep-learning (DL) techniques have been applied to reconstruction from highly undersampled data, resulting in significant scan accelerations. To assess clinical acceptability, we evaluated DL-based reconstruction on 3D MPRAGE data, using scores from image evaluation by neuroradiologists. Our DCI-Net method with reduction factor R=10 received scores higher than or equal to those of conventional parallel imaging with R=2.1. This implies the DL method can accelerate scans by an additional factor of 5 while maintaining comparable diagnostic image quality.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords