Compressed Sensing theory is often applied to accelerate the acquisition of multi-contrast MR images. When highly undersampled, CS-MRI suffers from non-negligible reconstruction error. Here we propose an unrolled iterative deep-learning model to further utilize the group sparsity property for multi-contrast MRI reconstruction at high acceleration factor, named Joint-ISTA-Net, to reduce reconstruction error and aliasing. Our method adds a joint-shrinkage-thresholding model into ISTA-Net to generate a better reconstruction for multi-contrast image pairs. Experiments show the effectiveness of the proposed strategy.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords