It has previously been shown that neural networks combined with variable k-space undersampling (MultiNet GRAPPA) is superior to a conventional GRAPPA reconstruction and is feasible at 7T. Here, MultiNet reconstruction of several new CAIPIRINHA-based variable-density k-space undersampling schemes is investigated. A new approach to train the neural networks (NN) by augmenting the MRSI data with the non-water suppressed (NWS) data to provide additional self-calibration training data is also introduced and evaluated. In this study, both are shown here to reduce lipid artifacts and improve metabolic maps at high acceleration factors relative to those previously proposed for MultiNet GRAPPA.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords