To accelerate the acquisition time of quantitative susceptibility mapping (QSM) using a 3D multi-echo gradient echo (mGRE) sequence, an unrolled multi-channel deep ADMM reconstruction network with a LOUPE-ST based 2D variable density sampling pattern optimization module is trained to optimize both the k-space under-sampling pattern and the reconstruction. Prospectively under-sampled k-space data are acquired using a modified mGRE sequence and reconstructed by the trained unrolled network. Prospective study shows the learned sampling pattern achieves better image quality in QSM compared to a manually designed pattern.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords