Meeting Banner
Abstract #2409

Using uncertainty estimation to increase the robustness of bone marrow segmentation in T1-weighted Dixon MRI for multiple myeloma

Renyang Gu1, Michela Antonelli1, Pritesh Mehta 2, Ashik Amlani 3, Adrian Green3, Radhouene Neji 4, Sebastien Ourselin1, Isabel Dregely1, and Vicky Goh1
1School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom, 2Biomedical Engineering and Medical Physics, University College London, London, United Kingdom, 3Radiology, Guy’s and St Thomas’ Hospitals, London, United Kingdom, 4Siemens Healthcare Limited, Frimley, United Kingdom

Reliable skeletal segmentation of T1-weighted Dixon MRI is a first step towards measuring marrow fat-fraction as a surrogate metric for early marrow infiltration. We proposed an uncertainty-aware 2D U-Net (uU-Net) to reduce the impact of noisy ground-truth labels on segmentation accuracy. Five-fold cross-validation on a dataset of 30 myeloma patients provided a mean ± SD Dice coefficient of 0.74 ± 0.03 (vs. 0.73 ± 0.04, U-Net) and 0.63 ± 0.03 (vs 0.62 ± 0.04, U-Net) for pelvic and abdominal stations, respectively. Of clinical importance, improved segmentation of the ilium and vertebrae were achieved.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords