Deep learning based denoising can improve signal-to-noise ratio in high b-value diffusion imaging. Denoising CNN (DnCNN) model is trained with clean and simulated noisy patches of b=2000 s/mm2 DWI images from Openneuro database. We applied DnCNN to simulated noisy DWI and prospective DWI at b=2000 s/mm2.Unsharp masking used during testing to emphasize medium contrast details. Peak signal-to-noise ratio(>32dB) for simulated noisy DWI and image entropy(>7.17) for prospective DWI obtained after denoising. This denoising can be leveraged to shorten acquisition time by reducing the number of signal averages or increase resolution in through plane by acquiring with smaller slice thickness.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords