Meeting Banner
Abstract #2449

Patch-CNN-DTI: Data-efficient high-fidelity tensor recovery from 6 direction diffusion weighted imaging.

Tobias Goodwin-Allcock1, Ting Gong1, Robert Gray2, Parashkev Nachev2, and Hui Zhang1
1Centre for Medical Image Computing (CMIC), UCL, London, United Kingdom, 2High-Dimensional Neurology, University College London Queen Square Institute of Neurology, London, United Kingdom

We present Patch-CNN-DTI, a deep-learning method to estimate diffusion tensors (DT) accurately from only 6 diffusion-weighted images. Early voxel-wise deep-learning methods can only estimate scalar measures of DT. Later work shows DT can be estimated using image-wise methods based on convolutional neural networks (CNN), but they require large training cohort. Patch-CNN-DTI can estimate DT with only one training subject, by pooling information from local neighbourhood of a voxel similar to the CNN but at a much smaller scale to minimise training data requirements. Results show it outperforms conventional model fitting with twice the number of diffusion directions.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords