The automatic assessment of paramagnetic rim lesions in multiple sclerosis is important, and a deep learning-based algorithm called RimNet has recently been proposed. This work evaluates the generalizability of RimNet and its longitudinal performance on MRI data acquired at different clinical centers. We found that RimNet’s performance was nearly as good on totally unseen data as in the original paper (receiver-operating-characteristic area-under-the-curve (AUC) 0.88 vs. 0.94, precision-recall AUC 0.69 vs. 0.70), and it made consistent predictions on longitudinal data (binary consistency 82%, probability consistency 93%).
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords