Meeting Banner
Abstract #2876

Generating Cardiac Segmentation Masks of Real-Time Images from Self-Gated MRI to Train Neural Networks

Martin Schilling1, Sebastian Rosenzweig1,2, Moritz Blumenthal1, and Martin Uecker1,2,3
1Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany, 2DZHK (German Centre for Cardiovascular Research), Göttingen, Germany, 3Campus Institute Data Science (CIDAS), University of Göttingen, Göttingen, Germany

Cardiac segmentation is essential for analyzing cardiac function. Manual labeling is relatively slow, so machine learning methods have been proposed to increase segmentation speed and precision. These methods typically rely on cine MR images and supervised learning. However, for real-time cardiac MRI, ground truth segmentations are difficult to obtain due to lower image quality compared to cine MRI. Here, we present a method to obtain ground truth segmentation for real-time images on the basis of self-gated MRI (SSA-FARY).

This abstract and the presentation materials are available to members only; a login is required.

Join Here