Meeting Banner
Abstract #3100

Mechanical Tilt-Induced Gradient Fields for Low-Field Spokes-and-Hub Permanent Magnet MR Imagers

Irene Kuang1, Jason Stockmann2,3, Elfar Adalsteinsson1,4, and Jacob White1
1Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States, 2A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States, 3Harvard Medical School, Boston, MA, United States, 4Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States

As recently demonstrated by Cooley et al., for Halbach-array based permanent-magnet MR imagers, time-varying encoding fields can be generated mechanically, by rotating the entire array. In this paper we show that in spokes-and-hub based permanent magnet imagers, time-varying encoding fields can also be generated mechanically, but with much smaller motions. In particular, we show that a quarter-degree magnet tilt, along an easily precessed axis, can produce a spatially-discriminating field gradient. We demonstrate the spatial discrimation using both simulation and measurements from our recently-presented prototype imager.

This abstract and the presentation materials are available to members only; a login is required.

Join Here