Accurate regional segmentation of the Lumbosacral Plexus (LSP) on magnetic resonance neurography (MRN) images is a fundamental requirement before LSP related disorders diagnosis can be achieved. In this paper, we utilize U-Net to segment LSP trunk and branch from three-dimensional fast field echo(3D-FFE) with principle of selective excitation technique (Proset) images. The results show that a U-Net deep learning framework expresses highly performance and less time-consumption for LSP segmentation in patients with degenerative spinal diseases and healthy subjects.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords