Meeting Banner
Abstract #3260

Neural Network for Autonomous Segmentation and Volumetric Assessment of Clot and Edema in Intracerebral Hemorrhages

Thomas Lilieholm1, Matt Henningsen2, Azam Ahmed3, Alan McMillan1,4, and Walter F Block1,4,5
1Medical Physics, University of Wisconsin at Madison, Madison, WI, United States, 2Electrical Engineering, University of Wisconsin at Madison, Madison, WI, United States, 3Neurological Surgery, University of Wisconsin at Madison, Madison, WI, United States, 4Radiology, University of Wisconsin at Madison, Madison, WI, United States, 5Biomedical Engineering, University of Wisconsin at Madison, Madison, WI, United States

Previous work has shown that minimally-invasive reduction of hematoma volume in intracerebral hemorrhage to a threshold of 15mL is indicative of improved long term patient outcome. To attain this goal, image-guided minimally-invasive surgical techniques are applied to both lyse clot material and drain from the site of hemorrhage via a porous catheter. We propose a Convolutional Neural Network to identify and autonomously segment clot and peripheral edema in MR images of the brain for volumetric analysis, and image-guidance during evacuation. Quantitative measurements produced in this way can be used for superior clot visualization and direct measurement of remaining clot volume.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords