Applying deep learning models to MRI scans of acute stroke patients to extract features that are indicative of short-term outcome could assist a clinician’s treatment decisions. Deep learning models are usually accurate but are not easily interpretable. Here, we trained a convolutional neural network on ADC maps from hyperacute ischaemic stroke patients for prediction of short-term functional outcome and used an interpretability technique to highlight regions in the ADC maps that were most important in the prediction of a bad outcome. Although highly accurate, the model’s predictions were not based on aspects of the ADC maps related to stroke pathophysiology.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords