Meeting Banner
Abstract #3523

Streaking artifact reduction of free-breathing undersampled stack-of-radial MRI using a 3D generative adversarial network

Chang Gao1,2, Vahid Ghodrati1,2, Dylan Nguyen3, Marcel Dominik Nickel4, Thomas Vahle4, Brian Dale5, Xiaodong Zhong6, and Peng Hu1,2
1Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States, 2Department of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, CA, United States, 3Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, United States, 4MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany, 5MR R&D Collaborations, Siemens Medical Solutions USA, Inc., Cary, NC, United States, 6MR R&D Collaborations, Siemens Medical Solutions USA, Inc., Los Angeles, CA, United States

Undersampling in free-breathing stack-of-radial MRI is desirable to shorten the scan time but introduces streaking artifacts. Deep learning has shown an excellent performance in removing image artifacts. We developed a 3D residual generative adversarial network (3D-GAN) to remove streaking artifacts caused by radial undersampling. We trained and tested the network using paired images that were undersampled with acceleration factors of 3.1x to 6.3x and fully-sampled from single echo and multi-echo acquisitions. We demonstrate the feasibility of the network with 3.1x to 6.3x acceleration factors and 6 different echo times.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords