Simultaneous multi-slab (SMSlab) is a 3D acquisition method that can achieve optimal SNR efficiency for isotropic high-resolution DWI. However, boundary artifacts restrain its application. Nonlinear inversion for slab profile encoding (NPEN) seems to be inadequate for boundary artifacts correction in SMSlab. In this study, we proposed to use a model-based convolutional neural network (referred as CPEN) for this problem. According to the results, it outperforms NPEN in images with different resolutions, and the computation is much faster. Using CPEN, small oversampling factors can be used to reduced the acqsuition time, which is of great meaning for high-resolution whole-brain DWI.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords