Current parallel transmit pulse design is based on a spatial domain formulation that has prohibitive memory and computational requirements when the number of coils or the number of dimensions is large. We previously introduced a k-space domain method that produces a sparse matrix relating any target excitation pattern in k-space to the pulses that produce it, which can be finely parallelized, has much smaller memory footprint, and can compensate off-resonance. Here we validate the algorithm for 3D inner-volume excitation using a simulated 24-channel transmit array and a SPINS trajectory, with comparisons to conventional iterative spatial domain designs.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords