While versatile soft tissue contrasts are achievable in MRI, contrast attainable from each scan is predetermined by the imaging protocol. A retrospective tuning of contrast will provide an opportunity to normalize MRI data for radiomics analysis. In this study, we present a new paradigm to obtain a spectrum of contrasts from a single T1-weighted image. Using deep learning, T1 map, proton density map, and B1 map are predicted from every T1-weighted image, and new contrasts can be obtained with the application of Bloch equations. The method has been validated in knee MRI with high accuracy achieved.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords