We propose a novel gradient-based meta-learning scheme to tackle the challenges when deploying the model to a different medical center with the lack of labeled data. A pre-trained model is always suboptimal when deploying to different medical centers, where various protocols and scanners are used. Our method combines a 2D U-Net as a segmentor to generate segmentation maps and an adversarial network to learn from the shape prior in the meta-train and meta-test. Evaluation results on the public prostate MRI data and our HKU local database show that our approach outperformed the existing naive U-Net methods.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords