Traditional MRI employs time division duplexing between the receiver (RX) and transmitter (TX) to avoid RX saturation from TX self-interference. Large switching time between the TX and RX modes demands large TX power and constricts the imaging to tissues with large relaxation times. In this work, we propose a magnetic-free, switch-transmission line circulator which is fully compatible with MRI systems and achieve simultaneous transmit and receive (STAR) MRI.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords