Iterative neural networks (INNs) currently define the state-of-the-art for image reconstruction methods. With these methods, the obtained regularizers are not only optimally adapted to the employed physical model but also tailored to the reconstruction method the network implicitly defines. However, comparing the performance of different INNs-based methods is often challenging because of the black-box character of neural networks. In this work we construct an example which highlights the importance of keeping the number of trainable parameters approximately fixed when comparing INNs-based methods. If this aspect is not taken into consideration, wrong conclusions could be drawn.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords