We propose a new correction scheme using a deep neural network with unsupervised learning to correct Nyquist ghosts and geometry distortions occurring in EPI. The proposed scheme includes NGAC-net and GDC-net. First, the NGAC-net estimates the phase error of k-space with the help of a ghost formulation operator and correlation loss. The NGAC-net produces two Nyquist ghost corrected images obtained by dual-polarity phase-encoding gradients. The GDC-net is trained to estimate the frequency-shift map using the two output images from the NGAC-net. Afterwards, an MR image generation operator utilizes the estimated frequency-shift map to obtain the geometry distortion corrected images.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords