Meeting Banner
Abstract #0565

Towards quantification of semisolid tissue properties at 7T using multiband-MRF methods.

Daniel West1,2, Raphael Tomi-Tricot3, Lucilio Cordero-Grande1,4,5, Pip Bridgen1, Tom Wilkinson1, Sharon Giles1, Joseph Hajnal1,4, and Shaihan Malik1,4
1Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom, 2London Collaborative Ultra High Field System (LoCUS), London, United Kingdom, 3MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom, 4Centre for the Developing Brain, King's College London, London, United Kingdom, 5Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BNN, Madrid, Spain

Synopsis

Since semisolid tissue components are strong determinants of relaxation parameters, estimation of semisolid properties may lead to more robust and direct characterization of tissues than relaxation measurement. We have used multiband MR fingerprinting at ultra-high field in an exploratory study towards high resolution quantitative imaging with efficient parameter encoding. To achieve this, two variants of a steady-state sequence are proposed that employ different cycling of nonselective multiband RF pulses: one to highlight dipolar order effects apparent in lipid bilayer-like materials such as myelin, and the other to measure semisolid T2. Initial phantom results and preliminary in vivo investigation are presented.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords