Meeting Banner
Abstract #0661

High-resolution dynamic 3D UTE Lung MRI using motion-compensated manifold learning

Qing Zou1, Luis A. Torres2, Sean B. Fain1, and Mathews Jacob1
1University of Iowa, Iowa City, IA, United States, 2University of Wisconsin–Madison, Madison, WI, United States


UTE radial MRI methods are powerful tools for probing lung structure and function. However, the challenge in directly using this scheme for high-resolution lung imaging applications is the long breath-hold needed. While self-gating approaches that bin the data to different respiratory phases are promising, they do not allow the functional imaging of the lung and are often sensitive to bulk motion. The main focus of this work is to introduce a novel motion compensated manifold learning framework for functional and structural lung imaging. The proposed scheme is robust to bulk motion and enables high-resolution lung imaging in around 4 minutes.

This abstract and the presentation materials are available to members only; a login is required.

Join Here