Meeting Banner
Abstract #0685

Uncertainty estimation via ensembling for deep learning-based MR image reconstruction

Tobias Hepp1,2, Sergios Gatidis1,2, Kerstin Hammernik3,4, and Thomas Küstner1
1Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tübingen, Germany, 2Max Planck Institute for Intelligent Systems, Tübingen, Germany, 3Lab for AI in Medicine, Technical University of Munich, Munich, Germany, 4Department of Computing, Imperial College London, London, United Kingdom


Deep learning-based MR image reconstruction from undersampled data bears the risk of inducing reconstruction errors like in-painting of non-anatomical structures, or missing pathologies. These errors may be obscured by the deep learning process and thus remain undiscovered. Furthermore, most methods are task-specialized and not well calibrated to domain shifts. Thus, integrated uncertainty prediction would be desirable. We propose a deep ensembling strategy that allows us to assess potential algorithm failures and better adapt to changing scenarios. The proposed approach can be paired with any DL reconstruction, enabling investigations of their predictive uncertainties on a voxel-level.

This abstract and the presentation materials are available to members only; a login is required.

Join Here