Meeting Banner
Abstract #0739

Automatic Assessment of Fetal Gestational Age using Bayesian Deep learning Method

Axel Largent1, Jonathan Murnick1,2, Yuan-Chiao Lu1, Kushal Kapse1, Nicole Andersen1, Todd Richmann1, Josepheen De Asis-Cruz1, Jessica Quistorff1, Catherine Lopez1, Nickie Andescavage1,3, and Catherine Limperopoulos1,2,4
1Department of Diagnostic Imaging and Radiology, Children’s National Hospital, Developing Brain Institute, Washington, DC, United States, 2Departments of Radiology and Pediatrics, George Washington University, Washington, DC, United States, 3Department of Neonatology, Children's National Hospital, Washington, DC, United States, 4Neurology School of Medicine and Health Sciences, George Washington University, 20010, DC, United States

Synopsis

Monitoring fetal brain development is crucial for early diagnosis of brain malformations and other congenital disorders. Standard methods to monitor brain maturation are mainly based on subjective and time-consuming visual analysis of the progression of sulcation. Our study proposed a Bayesian deep-learning method (DLM) for automatic assessment of fetal-gestational age (GA), and accurate and efficient identification of fetuses with abnormal brain development. Our Bayesian DLM showed excellent performance in predicted GA (mean-absolute-error = 0.928 weeks) and compared favorably with other state-of-the-art methods. This method may be used in clinical practice for monitoring fetal-brain development and early diagnosis of fetal brain malformations.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords