Deep-learning (DL)-based MRI reconstructions have shown great potential to reduce scan time while maintaining diagnostic image quality. However, their adoption has been plagued with fears that the models will hallucinate or eliminate important anatomical features. To address this issue, we develop a framework to identify when and where a reconstruction model is producing potentially misleading results. Specifically, our framework produces confidence intervals at each pixel of a reconstruction image such that 95% of these intervals contain the true pixel value with high probability. In-vivo 2D knee and brain reconstruction results demonstrate the effectiveness of our proposed uncertainty estimation framework.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords