Deep learning based accelerated MRI reconstruction pipelines have potential to enable higher acceleration factors compared to traditional methods with fast reconstruction times and improved image quality. Although there have been studies regarding model architecture, loss function, and k-space undersampling patterns; the effect of scanner parameters, variations in sensitivity map estimation, training data requirement, and engineering decisions during model optimization and evaluation on the reconstruction performance remain largely unexplored. We systematically study the impact of such and show that such data extent, re-processing, and metric computation impact performance to the same or at larger extents than new architectures and loss functions.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords