Meeting Banner
Abstract #0952

Improved Neural Network-Based Coil Compression

Elizabeth K. Cole1,2, Qingxi Meng1,2, Anishka Raina3, John M. Pauly2, and Shreyas S. Vasanawala4
1Equal Contribution, Stanford, CA, United States, 2Electrical Engineering, Stanford University, Stanford, CA, United States, 3The Harker School, San Jose, CA, United States, 4Rad/Pediatric Radiology, Stanford University, Stanford, CA, United States

Synopsis

Coil compression is performed in magnetic resonance imaging (MRI) to enable smaller datasets and faster computation time. However, the traditional coil compression process is lengthy and lossy. In this work, we proposed a novel neural network-based coil compression method to achieve higher reconstruction accuracy and faster coil compression. Our method consistently achieved up to 1.5x lower NRMSE compared to SVD and GCC on the fastMRI knee dataset. The computational requirements of our method are practical, and inference runs 10 times faster than the traditional methods.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords