Meeting Banner
Abstract #1055

Concept of a symmetry-guided single-layer neural network for image reconstruction of undersampled radial-MRI k-space data.

Sjoerd Ypma1, Ivo Maatman1, Matthan Caan2, Dimitris Karkalousos2, Marnix Maas1, and Tom Scheenen1
1Radboud UMC, Radiology and Nuclear Medicine, University of Nijmegen, Nijmegen, Netherlands, 2Amsterdam UMC, Biomedical Engineering and Physics, University of Amsterdam, Amsterdam, Netherlands

Synopsis

Undersampled k-space data reconstruction results in aliasing artifacts. Compressed sensing theory enables image reconstruction by using a priori knowledge in the form of regularization. Increasingly, Machine Learning methods are used to learn the regularization from data itself, but these methods can result in unstable reconstructions.

We propose a translation equivariant single-layer neural network for reconstruction of radially measured k-space data. By exploiting translation symmetry, it can learn from randomly simulated data while still being applicable to in-vivo measurements. We tested robustness to small perturbations and reliability of the reconstruction of unexpected objects.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords