We propose to simulate a large set of anatomically variable voxel-aligned and artifact-free brain MRI data at different resolutions to be used for training deep-learning based Super Resolution (SR) networks. To the best of our knowledge, no such efforts have been made in past regarding use of simulated data to train a SR network. We trained a SR network using such simulated data and tested the performance on real-world MRI data. The trained network could significantly sharpen low-resolution input MR images and clearly outperformed classic image interpolation methods.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords