Efforts are required to design Deep Learning models that are not only powerful, but also capable of expressing the certainty of their predictions.
We evaluate 3 state-of-the-art techniques for uncertainty quantification : Monte-Carlo Dropout, Deep Ensemble, and Heteroscedastic models. Evaluation is illustrated on a task of automatic segmentation of White-Matter Hyperintensities in T2-weighted FLAIR MRI sequences of Multiple-Sclerosis patients. Analysis is performed at 3 different scales : the voxel, the lesion, and the whole image. Results indicate the superiority of the Heteroscedastic approach, which ranked first in both the uncertainty and segmentation tasks.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords