Multiparametric MRI (mpMRI) is a valuable tool for the diagnosis of prostate cancer. Computer-aided detection and diagnosis (CAD) systems have the potential to improve robustness and efficiency compared to traditional radiological reading of mpMRI in prostate cancer. Co-registration of diffusion-weighted and T2-weighted images is a crucial step of CAD but is not always flawless. Automated detection of poorly co-registered cases would therefore be a useful supplement. This work shows that a fully automated quality control system for co-registration of prostate MR images based on deep learning has potential for this purpose.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords