Meeting Banner
Abstract #1971

Residual U-net for denoising 3D low field MRI

Tobias Senft1, Reina Ayde1, Marco Fiorito1, Najat Salameh1, and Mathieu Sarracanie1
1Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland

Synopsis

Low magnetic field (LF) MRI is currently gaining momentum as a complementary, more flexible and cost-effective approach to MRI diagnosis. However, the impaired signal-to-noise ratio challenges its relevance for clinical applications. Recently, denoising of low SNR images using deep learning techniques has shown promising results for MRI applications. In this study, we assess the denoising performance of residual U-net architecture on different SNR levels of LF MRI data (0.1 T). The model performance has been evaluated on both simulated and acquired LF MRI datasets.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords