Meeting Banner
Abstract #1986

A CNN for Oxygen Extraction Fraction Mapping with combined QSM and qBOLD

Patrick Kinz1 and Lothar Schad1
1Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany

Synopsis

MRI-based mapping of oxygen extraction fraction with QSM and qBOLD is a non-invasive diagnostic tool with many possible applications. But current reconstruction methods based on quasi-Newton (QN) methods are very dependent on accurate parameter initialization. Artificial Neural Networks showed a lot of potential in our previous works. Using a Convolutional Neural Network improves the reconstruction, since neighboring voxels can provide additional information. Using a GESFIDE sequence to sample the qBOLD signal instead of a standard mGRE that samples only the FID, improves the reconstruction accuracy of R2, Y and χnb a lot.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords