Accessing medical data is highly protected by law and ethics, making data sharing difficult and time-consuming. Distributed learning in its various forms allows learning from medical data without these data ever leaving the medical institutions. In this study, we evaluate the Flower federated learning framework for prostate segmentation on T2-Weighted MRI. The results show that the Federated learning framework performs comparably to the reference (centralized learning) model.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords