Meeting Banner
Abstract #2164

A deep-learning non-contrast MRI lesion segmentation model for liver cancer patients that may have had previous surgery

Nora Vogt1, Zobair Arya1, Luis Núñez1, John Connell1, and Paul Aljabar1
1Perspectum, Oxford, United Kingdom

Synopsis

Segmentation of lesions within the liver is pivotal for surveillance, diagnosis and treatment planning, and automated or semi-automated approaches can aid clinical workflows. Many patients that are under surveillance may have had previous surgery, meaning their scans will contain post-surgical features. We investigate the use of a deep learning segmentation model for non-contrast MRI that can distinguish between lesions, surgical clips and resection-induced fluid-filling regions. We report mean dice scores of 0.55, 0.72 and 0.88 for these classes respectively, demonstrating the potential of this model for semi-automated workflows.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords