Meeting Banner
Abstract #2438

Explainable multi-contrast deep learning model with anomaly-aware attention for reduced gadolinium dose in CE brain MRI - a feasibility study

Srivathsa Pasumarthi Venkata1, Ben Andrew Duffy1, Enhao Gong2, Greg Zaharchuk3, and Keshav Datta1
1R&D, Subtle Medical Inc, Menlo Park, CA, United States, 2R&D, Subtle Medical Inc., Menlo Park, CA, United States, 3Department of Radiology, Stanford University, Stanford, CA, United States

Synopsis

Complementary information from multi-contrast MRI data is used in deep learning algorithms for reducing contrast dosage in brain MRI. Though existing models produce clinically equivalent post-contrast images, they lack explainability in terms of mapping the source of contrast information from input to output. In this work we explore the feasibility of an explainable deep learning model for gadolinium dose reduction in contrast-enhanced brain MRI.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords