Meeting Banner
Abstract #2518

Application of Deep Learning techniques to Magnetic Resonance Fingerprinting

Raffaella Fiamma Cabini1,2, Leonardo Barzaghi1,3, Davide Cicolari2,4, Anna Pichiecchio5,6, Silvia Figini2,7, Paolo Arosio8,9, Marta Filibian2,10, Alessandro Lascialfari2,4, and Stefano Carrazza8,9
1Department of Mathematics, University of Pavia, Pavia, Italy, 2INFN, Istituto Nazionale di Fisica Nucleare - Pavia Unit, Pavia, Italy, 3Department of Neuroradiology, Advanced Imaging and Radiomics, IRCCS Mondino Foundation, Pavia, Italy, 4Department of Physics, University of Pavia, Pavia, Italy, 5Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy, 6Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy, 7Department of Social and Political Science, University of Pavia, Pavia, Italy, 8Department of Physics, University of Milano, Milano, Italy, 9INFN, Istituto Nazionale di Fisica Nucleare - Milano Unit, Milano, Italy, 10Centro Grandi Strumenti, University of Pavia, Pavia, Italy

Synopsis

We developed a Neural Network (NN) for the reconstruction of T1 and T2 parametric maps obtained with the Magnetic Resonance Fingerprinting (MRF) technique. The training phase was realized on experimental inputs, eliminating the use of simulated datasets and theoretical models. The set of optimal hyperparameters of the NN and the supervised training algorithm were established through an optimization procedure. The model achieved similar performances to the traditional reconstruction method, but the number of MRF images required was lower with respect to the dictionary-based method. If translated to the clinic, our results envisage a significant time shortening of MRI investigation.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords