Meeting Banner
Abstract #2596

Non-Linear Optimization for Enhanced Parameter Retrieval in MR Fingerprinting

John T. Lundstrom1,2, Megan E. Poorman3, Andrew Dienstfrey4, and Kathryn E. Keenan3
1Department of Physics, University of Colorado, Boulder, CO, United States, 2Associate of the National Institute of Standards and Technology, Boulder, CO, United States, 3Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO, United States, 4Information Technology Laboratory, National Institute of Standards and Technology, Boulder, CO, United States

Synopsis

We investigate non-linear optimization to produce quantitative parameter maps in MR Fingerprinting. Our Monte Carlo analysis shows non-linear optimization to be robust with respect to noise. We also find non-linear optimization to yield consistent results when initialized by dictionary matching using either sparse or densely populated dictionaries. Our research outcomes suggest non-linear optimization is an effective enhancement to the MR Fingerprinting pipeline, allowing for smaller dictionary sizes and more accurate parameter retrieval. Future work will include enhancements to, and analysis of, the computational efficiency of non-linear optimization.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords