Meeting Banner
Abstract #3104

Deep Learning for Veterinary MRI: Automated Detection of Intervertebral Disc Herniation in Pet Dogs

Guoxiong Deng1,2,3, Shoujin Huang1, Ziran Chen1, Lifeng Mei1, Jianzhong Li3, Ruixiang Jiang3, WenYue Xiao3, Dexing Wei3, Yan Kang1,2, and Mengye Lyu1,2
1College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China, 2College of Applied Sciences, Shenzhen University, Shenzhen, China, 3Shenzhen GoldenStone Medical Technology Co. , Ltd, Shenzhen, China

Synopsis

The automated detection of Intervertebral disc (IVD) herniation in animal MRI may facilitate veterinary diagnosis, yet it is rarely studied due to the lack of training data and the challenges from inter-breed variations. Here, we constructed a dog spinal cord MRI dataset with bounding box annotations of herniated discs, and conducted experiments using a number of well-known deep learning models. We demonstrated that automated detection of animal IVD herniation was feasible and in general two-stage detection models such as Faster R-CNN outperformed one-stage models.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords