To yield clinical utility in mental disorder identification individually, we used a multiple instance learning-based method to construct a digital model based on clinical MRI scans for automated detection of patients with psychiatric disorders. An accuracy of 84% was achieved in the primary dataset with 19453 subjects, and 76% in external dataset with 600 subjects. A higher sensitivity was achieved in identifying high-risk subjects than self-scaled questionnaires (71.1% vs 22.2%) in 148 prospectively recruited college students. With a complete workflow of development and validation, the constructed model is more practical to be translated in high-risk subject screening among vulnerable populations.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords