PROPELLER sequence is useful because of its robustness to patient motion. Longer acquisition than FSE is a major drawback limiting its wider application in clinical practice. Here, we propose an accelerated T1 weighted PROPELLER of the brain using deep learning based parallel imaging (PI) reconstruction. Our method can unfold highly undersampled aliased images (PI factor = 7), enabling 2.3 times faster acquisition than full-sampling. A preliminary reader study with prospectively undersampled data showed that the proposed method significantly outperformed a conventional SENSE reconstruction in terms of streak artifact.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords