Meeting Banner
Abstract #3923

Improved Padding in CNNs for Quantitative Susceptibility Mapping

Juan Liu1
1Yale University, NEW HAVEN, CT, United States

Synopsis

Recently, deep learning approaches have been proposed for QSM processing - background field removal, field-to-source inversion, and single-step QSM reconstruction. In these tasks, the networks usually take local fields or total fields as inputs, which have valid voxels within volume of interests (VOIs) and invalid voxels outside of VOIs. CNNs fail to consider this spatial information when using spatial invariant filters and conventional padding mechanism, which could introduce spatial artifacts in the QSM results. Here, we propose an improved padding technique utilizing neighboring valid voxels of invalid voxels to estimate the invalid voxels in feature maps of CNNs.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords