We proposed a dual-domain self-supervised motion artifacts disentanglement network (DSMAD-Net) for the liver's gadoxetic acid-enhanced arterial phase images. The motion correction is converted to the image-to-image translation problem by assuming that motion-free images and motion-corrupted images belong to different domains. Specifically, image-to-image translation within the same domain is designed to constrain auto-encoders to learn the feature representation by utilizing the input images as supervision information. Moreover, the cross-domain translation explores the cycle consistency in the absence of paired motion-free and motion-corrupted images. Experimental results demonstrate that our method remarkably removes artifacts in the gadoxetic acid-enhanced arterial phase images.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords