Deep learning has been attracting attention as a new tool for image reconstruction. However, there is a lack of appropriate automatic evaluation metrics for reconstruction performance of small structures such as lesions, which poses a high hurdle for clinical application. Here, we explored the relationship between radiomic features of tumors and various DL reconstruction conditions, and proposed a new method based on radiomics to evaluate the reconstruction performance of DL against lesions. Based on the analysis using the concordance correlation coefficients for ground truth images, we explored several texture features that are sensitive to differences in reconstruction methods and conditions.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords