With an aging population, decreased muscle mass from conditions such as sarcopenia can be expected to lead to frequently decreased mobility, lowering patient quality of life. To develop effective treatments to slow down mobility loss, it is essential to obtain robust, objective mobility measurements that ideally do not require patient tasks. In this work, we explore the feasibility of predicting patient mobility by applying a neural network on sagittal knee MR images and accelerometry data from the Osteoarthritis Initiative.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords