Meeting Banner
Abstract #4683

Densely-overlapped locally low-rank algorithms outperform conventional locally low-rank algorithms for accelerating parametric mapping

Chenxi Hu1, Fan Yang1, Xin Tang1, Zhiyong Zhang1, and Dana Peters2
1Shanghai Jiao Tong University, Xuhui, China, 2Yale University, New Haven, CT, United States

Synopsis

The Locally Low-Rank (LLR) constraint has been increasingly used for MR acceleration. Here we compare two strategies for LLR-constrained reconstruction, namely the Non-overlapped LLR (NLLR) and the Densely-overlapped LLR (DLLR) to show their differences. The NLLR strategy has been used by a number of LLR algorithms, including the most well-known POCS algorithm. On the other hand, the DLLR strategy has not been well-recognized as a different strategy, and algorithms able to employ the strategy have only been developed recently. In this work, we show that DLLR is different and superior to NLLR by yielding faster convergence and reduced undersampling artifacts.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords